me relation between the factor systems of a group and those of an invariant subgroup
نویسنده
چکیده
The relation between the factor systems of a group and the factor systems of an invariant subgroup is discussed both for PU and for PUA representations. The results are used to discuss the factor systems of a class of magnetic space groups.
منابع مشابه
Groups and Ultra-groups
In this paper, in addition to some elementary facts about the ultra-groups, which their structure based on the properties of the transversal of a subgroup of a group, we focus on the relation between a group and an ultra-group. It is verified that every group is an ultra-group, but the converse is not true generally. We present the conditions under which, for every normal subultra-group of an u...
متن کاملFUZZY SUBGROUPS AND CERTAIN EQUIVALENCE RELATIONS
In this paper, we study an equivalence relation on the set of fuzzysubgroups of an arbitrary group G and give four equivalent conditions each ofwhich characterizes this relation. We demonstrate that with this equivalencerelation each equivalence class constitutes a lattice under the ordering of fuzzy setinclusion. Moreover, we study the behavior of these equivalence classes under theaction of a...
متن کاملSolvable $L$-subgroup of an $L$-group
In this paper, we study the notion of solvable $L$-subgroup of an $L$-group and provide its level subset characterization and this justifies the suitability of this extension. Throughout this work, we have used normality of an $L$-subgroup of an $L$-group in the sense of Wu rather than Liu.
متن کاملFrames and Homogeneous Spaces
Let be a locally compact non?abelian group and be a compact subgroup of also let be a ?invariant measure on the homogeneous space . In this article, we extend the linear operator as a bounded surjective linear operator for all ?spaces with . As an application of this extension, we show that each frame for determines a frame for and each frame for arises from a frame in via...
متن کاملGrouplikes
In this paper we introduce and study an algebraic structure, namely Grouplike. A grouplike is something between semigroup and group and its axioms are generalizations of the four group axioms. Every grouplike is a semigroup containing the minimum ideal that is also a maximal subgroup (but the converse is not valid). The first idea of grouplikes comes from b-parts and $b$-addition of real number...
متن کامل